Reaching for Zero: Eliminating Mislabeled Specimens
نویسندگان
چکیده
منابع مشابه
Identifying and Eliminating Mislabeled Training Instances
This paper presents a new approach to identifying and eliminating mislabeled training instances. The goal of this technique is to improve classiication accuracies produced by learning algorithms by improving the quality of the training data. The approach employs an ensemble of clas-siiers that serve as a lter for the training data. Using an n-fold cross validation, the training data is passed t...
متن کاملDecreasing mislabeled laboratory specimens using barcode technology and bedside printers.
Mislabeling of laboratory samples has been found to be a high-risk issue in acute care hospitals. The goal of this study was to decrease mislabeled blood specimens. In the first year after the implementation of a positive patient identification system using barcoding and computer technology, the number of labeling errors decreased from 103 to 8 per year. The outcome was clinically and statistic...
متن کاملImproving Automated Land Cover Mapping by Identifying and Eliminating Mislabeled Observations from Training Data
This paper presents a new approach to identifying and eliminating mislabeled training samples. The goal of this technique is to decrease the error of classification algorithms by improving the quality of the training data. The approach employs an ensemble of classifiers that serve as a filter for the training data. Using an n-fold cross validation, the training data is passed through the filter...
متن کاملEliminating the Reaching Phase from Variable Structure Control
In this paper, we present a variable structure control method that eliminates the reaching phase. The approach is based on modifying the sliding domain equations through the use of exponential functions. In addition, the proposed method insures optimal convergence parameters with respect to the tracking errors and control effort.
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pediatric Quality & Safety
سال: 2021
ISSN: 2472-0054
DOI: 10.1097/pq9.0000000000000445